THE PHOTOCHEMISTRY OF AQUEOUS SOLUTIONS OF POTASSIUM IODIDE CONTAINING N₂O

F.S. Dainton and S.A. Sills

School of Chemistry, The University, Leeds, England

When an aqueous solution of potassium iodide for which 3.5 < pH < 11 and containing N_2O is irradiated by light of wavelength 2537 Å the following reactions occur.

(* and † denote photo excited ions).

$$I^{-}aq + hv \rightarrow * \rightarrow †$$

$$\uparrow \qquad \qquad 0$$

$$\dagger + I^{-} \stackrel{1}{\rightarrow} H + OH^{-} + I_{2}^{-}$$

$$H + N_{2}O \stackrel{2}{\rightarrow} N_{2} + OH \qquad \text{slow}$$

$$HO + I^{-} \stackrel{3}{\rightarrow} HO^{-} + I \qquad \text{fast}$$

$$I + I^{-} \stackrel{4}{\rightarrow} I_{2}^{-} \qquad \text{fast}$$

$$2 I_{2}^{-} \stackrel{5}{\rightarrow} I_{2} + 2I^{-} \text{ or } I_{3}^{-} + I^{-}$$

$$H + I_{2}^{-} \stackrel{6}{\rightarrow} H^{+} + 2 I^{-}$$

Consequently $\Phi(N_2) = \Phi(I_2)$ increases with concentration of N_2O and KI to a limiting value of 0.165, which is the maximum attainable yield of hydrogen atoms as a result of the first two processes, and k_1/k_0 can be evaluated from the experimental results. At low $[N_2O]$ the rate of reaction tends to become proportional to $(I_a[N_2O])^{2/3}$, and the rotating sector technique can be used to obtain the values of k_2 , k_3 and k_4 .

Change of pH below 3.5 and above 11 has dramatic effects. The sharp decline in $\Phi(I_2)$, the constancy of $\Phi(N_2)$ and the appearance of oxygen in yields such that $\Phi(N_2) = \Phi(I_2) + 2\Phi(O_2) = 0.16$ when

the pH is increased above pH 11 is caused by a simple competition between reaction 3 and reaction 7.

$$HO + OH^{-} \xrightarrow{7} O^{-}aq$$

The striking decrease of $\Phi(N_2)$, the increase of $\Phi(H_2)$ from zero and the minimum in $\Phi(I_2)$ which occur when the pH is decreased below 3.5 are due to two causes. Firstly, H⁺ competes with N₂O for H forming H₂⁺ in reaction 9, which

$$H + H^+ \xrightarrow{9} H_{2}^+$$

always oxidizes iodide according to equation 10. Consequently

$$H_2^+ + I^- \xrightarrow{10} H_2 + I$$
 fast

over this pH range $\Phi(I_2) = \Phi(H_2) + \Phi(N_2)$ and $\Phi(H_2)/\Phi(N_2) = k_9(H^+)/k_2(N_2O)$. Secondly, small concentrations of H⁺ interfere with reaction (1) so that Φ_H decreases as the pH changes from 3.0 to 1.2 but larger concentrations of H⁺ facilitate the formation of H, presumably via a reaction which may be written according to equation 11, so that Φ_H increases as the pH is further reduced.

• + H⁺
$$\stackrel{11}{\rightarrow}$$
 H + I

The numerical values of k_2 , k_5 , k_6 and k_9 and of the ratios k_0/k_1 and k_8/k_7 will be discussed.